Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 76
Filtrar
2.
Cell Calcium ; 118: 102851, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38308916

RESUMO

The Na+, K+ ATPases play a fundamental role in the homeostatic functions of astrocytes. After a brief historic prologue and discussion of the subunit composition and localization of the astrocytic Na+, K+ ATPases, the review focuses on the role of the astrocytic Na+, K+ pumps in extracellular K+ and glutamate homeostasis, intracellular Na+ and Ca2+ homeostasis and signaling, regulation of synaptic transmission and neurometabolic coupling between astrocytes and neurons. Loss-of-function mutations in the gene encoding the astrocytic α2 Na+, K+ ATPase cause a rare monogenic form of migraine with aura (familial hemiplegic migraine type 2). On the other hand, the α2 Na+, K+ ATPase is upregulated in spinal cord and brain samples from amyotrophic lateral sclerosis and Alzheimer disease patients, respectively. In the last part, the review focuses on i) the migraine relevant phenotypes shown by familial hemiplegic migraine type 2 knock-in mice with 50 % reduced expression of the astrocytic α2 Na+, K+ ATPase and the insights into the pathophysiology of migraine obtained from these genetic mouse models, and ii) the evidence that upregulation of the astrocytic α2 Na+, K+ ATPase in mouse models of amyotrophic lateral sclerosis and Alzheimer disease promotes neuroinflammation and contributes to progressive neurodegeneration.


Assuntos
Doença de Alzheimer , Esclerose Amiotrófica Lateral , Enxaqueca com Aura , Humanos , Camundongos , Animais , ATPase Trocadora de Sódio-Potássio/genética , ATPase Trocadora de Sódio-Potássio/metabolismo , Enxaqueca com Aura/genética , Enxaqueca com Aura/metabolismo , Astrócitos/metabolismo , Doença de Alzheimer/metabolismo , Esclerose Amiotrófica Lateral/genética , Esclerose Amiotrófica Lateral/metabolismo
3.
Hum Genomics ; 17(1): 70, 2023 07 28.
Artigo em Inglês | MEDLINE | ID: mdl-37507754

RESUMO

BACKGROUND: ALS is a heterogeneous disease in which different factors such as mitochondrial phenotypes act in combination with a genetic predisposition. This study addresses the question of whether homoplasmic (total mitochondrial genome of a sample is affected) and/or heteroplasmic mutations (wildtype and mutant mitochondrial DNA molecules coexist) might play a role in familial ALS. Blood was drawn from familial ALS patients with a possible maternal pattern of inheritance according to their pedigrees, which was compared to blood of ALS patients without maternal association as well as age-matched controls. In two cohorts, we analyzed the mitochondrial genome from whole blood or isolated white blood cells and platelets using a resequencing microarray (Affymetrix MitoChip v2.0) that is able to detect homoplasmic and heteroplasmic mitochondrial DNA mutations and allows the assessment of low-level heteroplasmy. RESULTS: We identified an increase in homoplasmic ND5 mutations, a subunit of respiratory chain complex I, in whole blood of ALS patients that allowed maternal inheritance. This effect was more pronounced in patients with bulbar onset. Heteroplasmic mutations were significantly increased in different mitochondrial genes in platelets of patients with possible maternal inheritance. No increase of low-level heteroplasmy was found in maternal ALS patients. CONCLUSION: Our results indicate a contribution of homoplasmic ND5 mutations to maternally associated ALS with bulbar onset. Therefore, it might be conceivable that specific maternally transmitted rather than randomly acquired mitochondrial DNA mutations might contribute to the disease process. This stands in contrast with observations from Alzheimer's and Parkinson's diseases showing an age-dependent accumulation of unspecific mutations in mitochondrial DNA.


Assuntos
Esclerose Amiotrófica Lateral , Genoma Mitocondrial , Humanos , Genoma Mitocondrial/genética , Herança Materna/genética , Esclerose Amiotrófica Lateral/genética , DNA Mitocondrial/genética , Mitocôndrias/genética , Mutação
4.
Glia ; 71(11): 2527-2540, 2023 11.
Artigo em Inglês | MEDLINE | ID: mdl-37431178

RESUMO

Gamma-aminobutyric acid (GABA), the principal inhibitory neurotransmitter in the brain, affects numerous immune cell functions. Microglia, the brain's resident innate immune cells, regulate GABA signaling through GABA receptors and express the complete GABAergic machinery for GABA synthesis, uptake, and release. Here, the use of primary microglial cell cultures and ex vivo brain tissue sections allowed for demonstrating that treatment with lipopolysaccharide (LPS) increased microglial GABA uptake as well as GABA transporter (GAT)-1 trafficking. This effect was not entirely abolished by treatment with GAT inhibitors (GAT-Is). Notably, LPS also induced microglial upregulation of bestrophin-1 (BEST-1), a Ca2+ -activated Cl- channel permeable to GABA. Combined administration of GAT-Is and a BEST-1 inhibitor completely abolished LPS-induced microglial GABA uptake. Interestingly, increased microglial GAT-1 membrane turnover via syntaxin 1A was detected in LPS-treated cultures after BEST-1 blockade. Altogether, these findings provided evidence for a novel mechanism through which LPS may trigger the inflammatory response by directly altering microglial GABA clearance and identified the GAT-1/BEST-1 interplay as a potential novel mechanism involved in brain inflammation.


Assuntos
Lipopolissacarídeos , Microglia , Microglia/metabolismo , Lipopolissacarídeos/farmacologia , Proteínas da Membrana Plasmática de Transporte de GABA/metabolismo , Bestrofinas/metabolismo , Ácido gama-Aminobutírico/metabolismo
5.
J Alzheimers Dis ; 93(4): 1485-1508, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37182890

RESUMO

BACKGROUND: Numerous mouse models of Alzheimer's disease (AD) are available, but all suffer from certain limitations, thus prompting further attempts. To date, no one model exists with amyloidopathy in a BALB/c strain. OBJECTIVE: To generate and characterize the C.B6/J-APPswe mouse, a model of AD with a mutated human gene for the amyloid-ß protein precursor (AßPP) inserted in a BALB/c background. METHODS: We analyzed five groups at different ages (3, 6, 9, 12, and 16-18 months) of C.B6/J-APPswe and wild-type mice (50% males and 50% females) for the main hallmarks of AD by western blotting, amyloid-ß (Aß) ELISA, immunocytochemistry, electrophysiology, and behavioral tests. RESULTS: The C.B6/J-APPswe mouse displays early AßPP and Aß production, late amyloid plaques formation, high level of Tau phosphorylation, synaptic deficits (reduced density and functional impairment due to a reduced post-synaptic responsiveness), neurodegeneration caused by apoptosis and necroptosis/necrosis, microgliosis, astrocytic abnormalities, and sex-related differences in explorative behavior, anxiety-like behavior, and spatial long-term and working memories. Social housing is feasible despite the intra-cage aggressiveness of male animals. CONCLUSION: C.B6/J-APPswe mice develop most of the distinctive features of AD and is a suitable model for the study of brain atrophy mechanisms and of the differences between males and females in the onset of cognitive/non-cognitive deficits.


Assuntos
Doença de Alzheimer , Feminino , Camundongos , Masculino , Humanos , Animais , Doença de Alzheimer/metabolismo , Precursor de Proteína beta-Amiloide/genética , Precursor de Proteína beta-Amiloide/metabolismo , Modelos Animais de Doenças , Camundongos Transgênicos , Peptídeos beta-Amiloides/metabolismo
7.
Neurochem Res ; 48(4): 1167-1179, 2023 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-36583835

RESUMO

Glutamate levels and lifetime in the brain extracellular space are dinamically regulated by a family of Na+- and K+-dependent glutamate transporters, which thereby control numerous brain functions and play a role in numerous neurological and psychiatric diseases. Migraine is a neurological disorder characterized by recurrent attacks of typically throbbing and unilateral headache and by a global dysfunction in multisensory processing. Familial hemiplegic migraine type 2 (FHM2) is a rare monogenic form of migraine with aura caused by loss-of-function mutations in the α2 Na/K ATPase (α2NKA). In the adult brain, this pump is expressed almost exclusively in astrocytes where it is colocalized with glutamate transporters. Knockin mouse models of FHM2 (FHM2 mice) show a reduced density of glutamate transporters in perisynaptic astrocytic processes (mirroring the reduced expression of α2NKA) and a reduced rate of glutamate clearance at cortical synapses during neuronal activity and sensory stimulation. Here we review the migraine-relevant alterations produced by the astrocytic glutamate transport dysfunction in FHM2 mice and their underlying mechanisms, in particular regarding the enhanced brain susceptibility to cortical spreading depression (the phenomenon that underlies migraine aura and can also initiate the headache mechanisms) and the enhanced algesic response to a migraine trigger.


Assuntos
Transtornos de Enxaqueca , Enxaqueca com Aura , Camundongos , Animais , Astrócitos/metabolismo , Transtornos de Enxaqueca/metabolismo , Enxaqueca com Aura/genética , ATPase Trocadora de Sódio-Potássio/metabolismo , Ácido Glutâmico/metabolismo
8.
Mol Neurodegener ; 17(1): 76, 2022 11 25.
Artigo em Inglês | MEDLINE | ID: mdl-36434727

RESUMO

BACKGROUND: Recent clinical and experimental studies have highlighted the involvement of Ventral Tegmental Area (VTA) dopamine (DA) neurons for the early pathogenesis of Alzheimer's Disease (AD). We have previously described a progressive and selective degeneration of these neurons in the Tg2576 mouse model of AD, long before amyloid-beta plaque formation. The degenerative process in DA neurons is associated with an autophagy flux impairment, whose rescue can prevent neuronal loss. Impairments in autophagy can be the basis for accumulation of damaged mitochondria, leading to disturbance in calcium (Ca2+) homeostasis, and to functional and structural deterioration of DA neurons. METHODS: In Tg2576 mice, we performed amperometric recordings of DA levels and analysis of dopaminergic fibers in the Nucleus Accumbens - a major component of the ventral striatum precociously affected in AD patients - together with retrograde tracing, to identify the most vulnerable DA neuron subpopulations in the VTA. Then, we focused on these neurons to analyze mitochondrial integrity and Apoptosis-inducing factor (AIF) localization by electron and confocal microscopy, respectively. Stereological cell count was also used to evaluate degeneration of DA neuron subpopulations containing the Ca2+-binding proteins Calbindin-D28K and Calretinin. The expression levels for these proteins were analyzed by western blot and confocal microscopy. Lastly, using electrophysiology and microfluorometry we analyzed VTA DA neuron intrinsic properties and cytosolic free Ca2+ levels. RESULTS: We found a progressive degeneration of mesolimbic DA neurons projecting to the ventral striatum, located in the paranigral nucleus and parabrachial pigmented subnucleus of the VTA. At the onset of degeneration (3 months of age), the vulnerable DA neurons in the Tg2576 accumulate damaged mitochondria, while AIF translocates from the mitochondria to the nucleus. Although we describe an age-dependent loss of the DA neurons expressing Calbindin-D28K or Calretinin, we observed that the remaining cells upregulate the levels of Ca2+-binding proteins, and the free cytosolic levels of Ca2+ in these neurons are significantly decreased. Coherently, TUNEL-stained Tg2576 DA neurons express lower levels of Calbindin-D28K when compared with non-apoptotic cells. CONCLUSION: Overall, our results suggest that the overexpression of Ca2+-binding proteins in VTA DA neurons might be an attempt of cells to survive by increasing their ability to buffer free Ca2+. Exploring strategies to overexpress Ca2+-binding proteins could be fundamental to reduce neuronal suffering and improve cognitive and non-cognitive functions in AD.


Assuntos
Doença de Alzheimer , Área Tegmentar Ventral , Camundongos , Animais , Área Tegmentar Ventral/metabolismo , Área Tegmentar Ventral/patologia , Neurônios Dopaminérgicos/metabolismo , Dopamina/metabolismo , Calbindina 2/metabolismo , Doença de Alzheimer/metabolismo , Regulação para Cima , Proteínas de Transporte/metabolismo , Calbindina 1/metabolismo
9.
Nat Neurosci ; 25(12): 1639-1650, 2022 12.
Artigo em Inglês | MEDLINE | ID: mdl-36396976

RESUMO

The plasticity of glutamatergic transmission in the ventral tegmental area (VTA) represents a fundamental mechanism in the modulation of dopamine neuron burst firing and phasic dopamine release at target regions. These processes encode basic behavioral responses, including locomotor activity, learning and motivated behaviors. Here we describe a hitherto unidentified mechanism of long-term synaptic plasticity in mouse VTA. We found that the burst firing in individual dopamine neurons induces a long-lasting potentiation of excitatory synapses on adjacent dopamine neurons that crucially depends on Ca2+ elevations in astrocytes, mediated by endocannabinoid CB1 and dopamine D2 receptors co-localized at the same astrocytic process, and activation of pre-synaptic metabotropic glutamate receptors. Consistent with these findings, selective in vivo activation of astrocytes increases the burst firing of dopamine neurons in the VTA and induces locomotor hyperactivity. Astrocytes play, therefore, a key role in the modulation of VTA dopamine neuron functional activity.


Assuntos
Neurônios Dopaminérgicos , Área Tegmentar Ventral , Animais , Camundongos , Astrócitos , Dopamina , Receptores de Dopamina D2
10.
Neurosci Biobehav Rev ; 139: 104728, 2022 08.
Artigo em Inglês | MEDLINE | ID: mdl-35691473

RESUMO

Aging entails a progressive decline of cognitive abilities. However, since the brain is endowed with considerable plasticity, adequate stimulation can delay or partially compensate for age-related structural and functional impairment. Environmental enrichment (EE) has been reported to determine a wide range of cerebral changes. Although most findings have been obtained in young and adult animals, research has recently turned to aged individuals. Notably, EE can contribute identifying key lifestyle factors whose change can help extend the "mind-span", i.e., the time an individual lives in a healthy cognitive condition. Here we discuss specific methodological issues that can affect the outcomes of EE interventions applied to aged rodents, summarize the main variables that would need standardization (e.g., timing and duration, enrichment items, control animals and setting), and offer some suggestions on how this goal may be achieved. Reaching a consensus on EE experiment design would significantly reduce differences between and within laboratories, enable constructive discussions among researchers, and improve data interpretation.


Assuntos
Envelhecimento , Meio Ambiente , Envelhecimento/fisiologia , Animais , Encéfalo , Cognição/fisiologia , Padrões de Referência
11.
Prog Neurobiol ; 206: 102154, 2021 11.
Artigo em Inglês | MEDLINE | ID: mdl-34453977

RESUMO

The accumulation of amyloid-beta peptide (Aß) and the failure of cholinergic transmission are key players in Alzheimer's disease (AD). However, in the healthy brain, Aß contributes to synaptic plasticity and memory acting through α7 subtype nicotinic acetylcholine receptors (α7nAChRs). Here, we hypothesized that the α7nAChR deletion blocks Aß physiological function and promotes a compensatory increase in Aß levels that, in turn, triggers an AD-like pathology. To validate this hypothesis, we studied the age-dependent phenotype of α7 knock out mice. We found that α7nAChR deletion caused an impairment of hippocampal synaptic plasticity and memory at 12 months of age, paralleled by an increase of Amyloid Precursor Protein expression and Aß levels. This was accompanied by other classical AD features such as a hyperphosphorylation of tau at residues Ser 199, Ser 396, Thr 205, a decrease of GSK-3ß at Ser 9, the presence of paired helical filaments and neurofibrillary tangles, neuronal loss and an increase of GFAP-positive astrocytes. Our findings suggest that α7nAChR malfunction might precede Aß and tau pathology, offering a different perspective to interpret the failure of anti-Aß therapies against AD and to find novel therapeutical approaches aimed at restoring α7nAChRs-mediated Aß function at the synapse.


Assuntos
Doença de Alzheimer , Doença de Alzheimer/genética , Peptídeos beta-Amiloides/metabolismo , Animais , Glicogênio Sintase Quinase 3 beta , Camundongos , Fragmentos de Peptídeos/metabolismo , Receptores Nicotínicos/genética , Receptor Nicotínico de Acetilcolina alfa7/genética
12.
Front Mol Neurosci ; 14: 684977, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34211368

RESUMO

The main goal of scientific research is to uncover new knowledge to understand reality. In the field of life sciences, the aim of translational research-to transfer results "from bench to bedside"-has to contend with the problem that the knowledge acquired at the "bench" is often not reproducible at the "bedside," raising the question whether scientific discoveries truly mirror the real world. As a result, researchers constantly struggle to overcome the dichotomy between methodological problems and expectations, as funding agencies and industries demand expandable and quick results whereas patients, who are uninterested in the epistemological dispute, only ask for an effective cure. Despite the numerous attempts made to address reproducibility and reliability issues, some essential pitfalls of scientific investigations are often overlooked. Here, we discuss some limitations of the conventional scientific method and how researcher cognitive bias and conceptual errors have the potential to steer an experimental study away from the search for the vera causa of a phenomenon. As an example, we focus on Alzheimer's disease research and on some problems that may have undermined most of the clinical trials conducted to investigate it.

13.
Neurobiol Dis ; 156: 105419, 2021 08.
Artigo em Inglês | MEDLINE | ID: mdl-34111520

RESUMO

Migraine is a common but poorly understood sensory circuit disorder. Mouse models of familial hemiplegic migraine (FHM, a rare monogenic form of migraine with aura) show increased susceptibility to cortical spreading depression (CSD, the phenomenon that underlies migraine aura and can activate migraine headache mechanisms), allowing an opportunity to investigate the mechanisms of CSD and migraine onset. In FHM type 2 (FHM2) knock-in mice with reduced expression of astrocytic Na+, K+-ATPases, the reduced rate of glutamate uptake into astrocytes can account for the facilitation of CSD initiation. Here, we investigated the underlying mechanisms and show that the reduced rate of glutamate clearance in FHM2 mice results in increased amplitude and slowing of rise time and decay of the NMDA receptor (NMDAR) excitatory postsynaptic current (EPSC) elicited in layer 2/3 pyramidal cells by stimulation of neuronal afferents in somatosensory cortex slices. The relative increase in NMDAR activation in FHM2 mice is activity-dependent, being larger after high-frequency compared to low-frequency afferent activity. Inhibition of GluN1-N2B NMDARs, which hardly affected the NMDAR EPSC in wild-type mice, rescued the increased and prolonged activation of NMDARs as well as the facilitation of CSD induction and propagation in FHM2 mice. Our data suggest that the enhanced susceptibility to CSD in FHM2 is mainly due to specific activation of extrasynaptic GluN1-N2B NMDARs and point to these receptors as possible therapeutic targets for prevention of CSD and migraine.


Assuntos
Astrócitos/metabolismo , Depressão Alastrante da Atividade Elétrica Cortical/fisiologia , Ácido Glutâmico/metabolismo , Transtornos de Enxaqueca/metabolismo , Proteínas do Tecido Nervoso/metabolismo , Receptores de N-Metil-D-Aspartato/metabolismo , Animais , Espaço Extracelular/metabolismo , Feminino , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Transgênicos , Transtornos de Enxaqueca/genética , Proteínas do Tecido Nervoso/genética , Técnicas de Cultura de Órgãos , Receptores de N-Metil-D-Aspartato/genética , Córtex Somatossensorial/metabolismo
14.
Prog Neurobiol ; 202: 102031, 2021 07.
Artigo em Inglês | MEDLINE | ID: mdl-33684513

RESUMO

What happens precociously to the brain destined to develop Alzheimer's Disease (AD) still remains to be elucidated and this is one reason why effective AD treatments are missing. Recent experimental and clinical studies indicate that the degeneration of the dopaminergic (DA) neurons in the Ventral Tegmental Area (VTA) could be one of the first events occurring in AD. However, the causes of the increased vulnerability of DA neurons in AD are missing. Here, we deeply investigate the physiology of DA neurons in the VTA before, at the onset, and after onset of VTA neurodegeneration. We use the Tg2576 mouse model of AD, overexpressing a mutated form of the human APP, to identify molecular targets that can be manipulated pharmacologically. We show that in Tg2576 mice, DA neurons of the VTA at the onset of degeneration undergo slight but functionally relevant changes in their electrophysiological properties and cell morphology. Importantly, these changes are associated with accumulation of autophagosomes, suggestive of a dysfunctional autophagy, and with enhanced activation of c-Abl, a tyrosine kinase previously implicated in the pathogenesis of neurodegenerative diseases. Chronic treatment of Tg2576 mice with Nilotinib, a validated c-Abl inhibitor, reduces c-Abl phosphorylation, improves autophagy, reduces Aß levels and - more importantly - prevents degeneration as well as functional and morphological alterations in DA neurons of the VTA. Interestingly, the drug prevents the reduction of DA outflow to the hippocampus and ameliorates hippocampal-related cognitive functions. Our results strive to identify early pathological brain changes in AD, to provide a rational basis for new therapeutic interventions able to slow down the disease progression.


Assuntos
Doença de Alzheimer , Neurônios Dopaminérgicos , Doença de Alzheimer/tratamento farmacológico , Animais , Modelos Animais de Doenças , Dopamina , Camundongos , Pirimidinas , Área Tegmentar Ventral
15.
Exp Gerontol ; 146: 111225, 2021 04.
Artigo em Inglês | MEDLINE | ID: mdl-33388381

RESUMO

It has clearly been demonstrated that cognitive stimulation, physical exercise, and social engagement help counteract age-related cognitive decline. However, several important issues remain to be addressed. Given the wide differences in cognitive impairment found among individuals of the same age, identifying the subjects who will benefit most from late-life interventions is one such issue. Environmental Enrichment (EE) is a particularly valuable approach to do this. In this study, aged (21-month-old) rats were assigned to a better (BL) or a worse (WL) learner group (training phase) and to a non-impaired (NI) or an impaired (I) group (probe phase) by their performance on the Morris Water Maze, using the test performances of adult (12-month-old) rats as the cut-offs. The aged rats were retested after a 12-week EE or standard housing (SH) protocol. After 12 weeks, the performances of SH rats had deteriorated, whereas all rats benefited from EE, albeit in different ways. In particular, the animals assigned to the BL and the NI groups prior to EE still performed as well as the adult rats (performance preservation) whereas, critically, the animals assigned to the WL and the I groups before EE showed such improved performances that they reached the level of the adult rats (performance improvement), despite having aged further. EE seems to induce the preservation in BLs and the improvement in WLs of spatial search strategies and the preservation in NIs and the increase in Is of a focused and protract research of the escape point. Our findings suggest that late-life EE prevents spatial learning and memory decline in still cognitively preserved animals and stimulates residual functional reserve in already cognitively compromised animals. Future research should focus on individually tailored stimulation protocols to improve their effect and afford a better understanding of the underlying processes.


Assuntos
Disfunção Cognitiva , Aprendizagem Espacial , Animais , Meio Ambiente , Aprendizagem em Labirinto , Memória , Ratos , Memória Espacial
16.
Nat Aging ; 1(3): 235-236, 2021 03.
Artigo em Inglês | MEDLINE | ID: mdl-37118406

Assuntos
Neurociências
17.
Neuron ; 109(4): 611-628.e8, 2021 02 17.
Artigo em Inglês | MEDLINE | ID: mdl-33321071

RESUMO

Migraine with aura is a common but poorly understood sensory circuit disorder. Monogenic models allow an opportunity to investigate its mechanisms, including spreading depolarization (SD), the phenomenon underlying migraine aura. Using fluorescent glutamate imaging, we show that awake mice carrying a familial hemiplegic migraine type 2 (FHM2) mutation have slower clearance during sensory processing, as well as previously undescribed spontaneous "plumes" of glutamate. Glutamatergic plumes overlapped anatomically with a reduced density of GLT-1a-positive astrocyte processes and were mimicked in wild-type animals by inhibiting glutamate clearance. Plume pharmacology and plume-like neural Ca2+ events were consistent with action-potential-independent spontaneous glutamate release, suggesting plumes are a consequence of inefficient clearance following synaptic release. Importantly, a rise in basal glutamate and plume frequency predicted the onset of SD in both FHM2 and wild-type mice, providing a novel mechanism in migraine with aura and, by extension, the other neurological disorders where SD occurs.


Assuntos
Encéfalo/metabolismo , Ácido Glutâmico/metabolismo , Enxaqueca com Aura/genética , Enxaqueca com Aura/metabolismo , Modelos Genéticos , Transdução de Sinais/fisiologia , Animais , Feminino , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Transgênicos , Técnicas de Cultura de Órgãos
18.
Int J Mol Sci ; 21(14)2020 Jul 20.
Artigo em Inglês | MEDLINE | ID: mdl-32698329

RESUMO

In patients with Alzheimer's disease (AD), synaptic plasticity seems to be involved in cognitive improvement induced by cognitive training. The platelet amyloid precursor protein (APP) ratio (APPr), i.e., the ratio between two APP isoforms, may be a useful peripheral biomarker to investigate synaptic plasticity pathways. This study evaluates the changes in neuropsychological/cognitive performance and APPr induced by cognitive training in AD patients participating in the "My Mind Project". Neuropsychological/cognitive variables and APPr were evaluated in the trained group (n = 28) before a two-month experimental protocol, immediately after its termination at follow-up 1 (FU1), after 6 months at follow-up 2 (FU2), and after 24 months at follow-up 3 (FU3). The control group (n = 31) received general psychoeducational training for two months. Some memory and attention parameters were significantly improved in trained vs. control patients at FU1 and FU2 compared to baseline (Δ values). At FU3, APPr and Mini Mental State Examination (MMSE) scores decreased in trained patients. Δ APPr correlated significantly with the Δ scores of (i) MMSE at FU1, (ii) the prose memory test at FU2, and (iii) Instrumental Activities of Daily Living (IADL), the semantic word fluency test, Clinical Dementia Rating (CDR), and the attentive matrices test at FU3. Our data demonstrate that the platelet APPr correlates with key clinical variables, thereby proving that it may be a reliable biomarker of brain function in AD patients.


Assuntos
Doença de Alzheimer/metabolismo , Precursor de Proteína beta-Amiloide/metabolismo , Cognição , Atividades Cotidianas , Idoso , Doença de Alzheimer/patologia , Doença de Alzheimer/fisiopatologia , Biomarcadores/metabolismo , Plaquetas/metabolismo , Plaquetas/patologia , Feminino , Humanos , Masculino , Memória , Plasticidade Neuronal
19.
Rejuvenation Res ; 23(5): 411-419, 2020 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-32200710

RESUMO

Availability of reliable prognostic biomarkers that are also able to monitor preventive/therapeutic interventions in patients with mild cognitive impairment (MCI) is crucial. Cerebral brain-derived neurotrophic factor (BDNF) alterations were evidenced in Alzheimer's disease, but the value of blood BDNF in MCI is unclear, especially because of the incomplete/incorrect management of the numerous confounding factors unrelated to the disease. This study, applying a multidisciplinary methodological approach, aimed at clarifying whether blood BDNF can really mirror the cognitive symptoms of MCI, thus supporting the evaluation of clinical protocols' effectiveness as well as the definition of the conversion rate to dementia. Healthy elderly subjects (HE) and MCI patients were assessed for sociodemographic, neuropsychological, pharmacological, and lifestyle data, and plasma BDNF was measured (baseline); then, in the MCI cohort, the biomarker was tested in a comprehensive cognitive stimulation intervention (CS) as well as in a 2-year follow-up period. Plasma BDNF, cleansed from all the interfering factors, (1) did not discriminate HE and MCI patients; (2) in MCI patients reflected mood, social engagement, and subjective memory complaints but not cognition; (3) changed due to CS, although with no correlations to cognitive performances; and (4) predicted no functional deterioration. Our data indicate that the possible biased use of plasma BDNF in MCI is critically risky.


Assuntos
Doença de Alzheimer , Biomarcadores , Fator Neurotrófico Derivado do Encéfalo , Disfunção Cognitiva , Idoso , Biomarcadores/análise , Fator Neurotrófico Derivado do Encéfalo/análise , Disfunção Cognitiva/diagnóstico , Progressão da Doença , Humanos , Testes Neuropsicológicos
20.
Front Cell Neurosci ; 14: 9, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-32116556

RESUMO

γ-Aminobutyric acid (GABA) transporter (GAT)-1, the major GABA transporter in the brain, plays a key role in modulating GABA signaling and is involved in the pathophysiology of several neuropsychiatric diseases, including epilepsy. The original description of GAT-1 as a neuronal transporter has guided the interpretation of the findings of all physiological, pharmacological, genetic, or clinical studies. However, evidence published in the past few years, some of which is briefly reviewed herein, does not seem to be consistent with a neurocentric view of GAT-1 function and calls for more detailed analysis of its localization. We therefore performed a thorough systematic assessment of GAT-1 localization in neocortex and subcortical white matter. In line with earlier work, we found that GAT-1 was robustly expressed in axon terminals forming symmetric synapses and in astrocytic processes, whereas its astrocytic expression was more diffuse than expected and, even more surprisingly, immature and mature oligodendrocytes and microglial cells also expressed the transporter. These data indicate that the era of "neuronal" and "glial" GABA transporters has finally come to a close and provide a wider perspective from which to view GABA-mediated physiological phenomena. In addition, given the well-known involvement of astrocytes, oligodendrocytes, and microglial cells in physiological as well as pathological conditions, the demonstration of functional GAT-1 in these cells is expected to provide greater insight into the phenomena occurring in the diseased brain as well as to prompt a reassessment of earlier findings.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...